First, let’s get ourselves a surface normal so we can shade. This is a vector that is perpendicular to the surface, and by convention, points out.
This part is corresponding to Ray Tracing In One Weekend: Surface Normals and Multiple Objects.
bug of three.js: result of Ray.intersectSphere is wrong
function HitSphere(center: Vector3, radius: number, ray: Ray) {
For a sphere, the normal is in the direction of the hitpoint minus the center.
oc: origin to center
    const oc = ray.origin.clone().sub(center);
To get points of intersection, we need to solve the quadratic equation:
    const a = ray.direction.dot(ray.direction);
    const b = 2.0 * oc.dot(ray.direction);
    const c = oc.dot(oc) - radius * radius;
Let’s assume the closest hit point (smallest t):
    const Δ = b * b - 4 * a * c;
    if (Δ < 0) {
        return null;
    }
    return (-b - Math.sqrt(Δ)) / (2.0 * a);
}
function GenerateColor(ray: Ray, hitSphere: (center: Vector3, radius: number, ray: Ray) => number | null) {
    const center = new Vector3(0, 0, 1);
    const radius = 0.5;
const intersection = hitSphere(center, radius, ray);
    if (intersection != null) {
Let’s just visualize the normals with a color map. A common trick used for visualizing normals (because it’s easy and somewhat intuitive to assume N is a unit length vector — so each component is between −1 and 1) is to map each component to the interval from 0 to 1, and then map x/y/z to r/g/b.
To get the same color as that in Ray Tracing In One Weekend, we need to deal with coordinate conversion: -> and -> .
        const normal = ray
            .at(intersection, new Vector3())
            .sub(center)
            .normalize();
            
        return new Vector3(
            0.5 * (normal.x + 1),
            0.5 * (-normal.y + 1),
            0.5 * (-normal.z + 1)
        );
    }
    const unitDirection = ray.direction.clone().normalize();
    const t = 0.5 * (unitDirection.y + 1);
    const blend = new Vector3(0.5, 0.7, 1.0).lerp(new Vector3(1, 1, 1), t);
    return blend;
}
function RenderImage(canvas: HTMLCanvasElement, generateColor: (ray: Ray) => Vector3) {
    const topLeftCorner = new Vector3(-2, -1, 1);
    const horizontal = new Vector3(4, 0, 0);
    const vertical = new Vector3(0, 2, 0);
    const origin = new Vector3(0, 0, 0);
    const width = canvas.width;
    const height = canvas.height
    const context = canvas.getContext('2d');
    const imageData = context.getImageData(0, 0, width, height);
    for (let x = 0; x < width; ++x) {
        for (let y = 0; y < height; ++y) {
            const u = x / width;
            const v = y / height;
            const direction = topLeftCorner.clone()
                .addScaledVector(horizontal, u)
                .addScaledVector(vertical, v);
            const ray = new Ray(origin, direction);
            const color: Vector3 = generateColor(ray);
            const n = (y * width + x) * 4;
            imageData.data[n] = color.x * 255;
            imageData.data[n + 1] = color.y * 255;
            imageData.data[n + 2] = color.z * 255;
            imageData.data[n + 3] = 255;
        }
    }
    context.putImageData(imageData, 0, 0);
}
import { onMount } from 'svelte';
import { Vector3, Ray, Sphere } from 'three';
export default function Section() {
    let canvas: HTMLCanvasElement;
    onMount(() => {
        function hitSphere(center: Vector3, radius: number, ray: Ray) {
            //@ts-ignore
            <HitSphere />;
        }
        function generateColor(ray: Ray) {
            //@ts-ignore
            <GenerateColor />;
        };
        //@ts-ignore
        <RenderImage />;
    });
    let width = 600;
    let height = 300;
    <div class="container">
        <canvas bindRef={canvas} width={width} height={height}></canvas>
    </div>
}